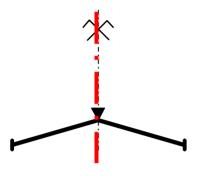


Profil en long

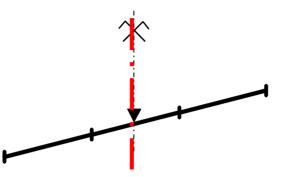
- ▶ Coupe verticale passant par l'axe de la route
- ▶ Échelle déformée
 - >> Rendre perceptible les déclivités et les différences d'altitudes
 - ➤ Échelle des longueurs reportée en abscisse équivalente à celle du plan de situation
 - ➤ Échelle des altitudes 10 fois plus grande

Exemple de profil en long

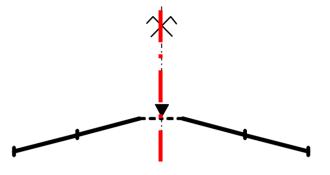
de circulation - Automne 2024

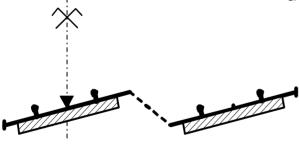

Éléments géométriques

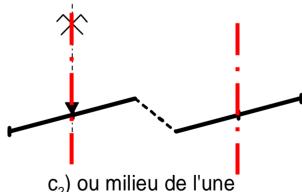
- ▶ Composé de deux éléments géométriques simples
- Déclivités constantes
 - >> Ligne droite
 - **▶ i** (en %)
- ▶ Arc de cercle
 - >> Cercle vertical
 - **▶** Rayon vertical R_v


Éléments géométriques

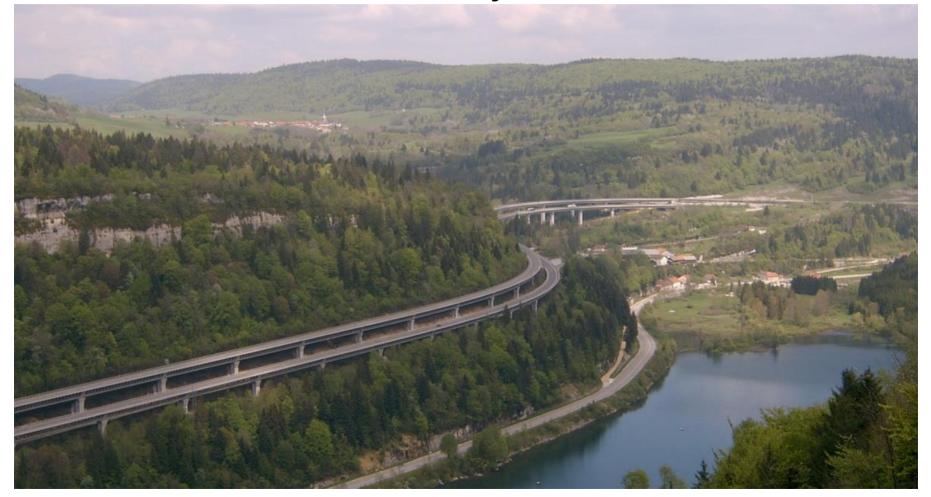
- **▶** Courbe de raccordement
 - **→** Rayons verticaux importants → faibles chocs verticaux
 - >> Pas nécessaire


Axes de référence


a) route à 2 voies:
 milieu, ou un bord
 de la chaussée


b) route à 3 voies:
 milieu de la voie
 centrale, ou un bord
 de l'une des voies

c₁) route à 4 voies avec terre-plein central: milieu du terre-plein


d) chemin de fer à 2 voies: milieu entre les 2 rails de l'une des voies

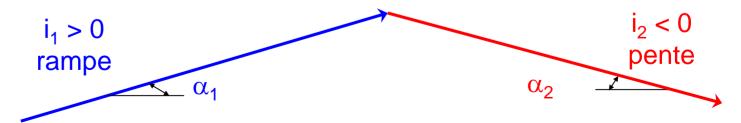
c₂) ou milieu de l'une des deux chaussées

Exemples de chaussées décalées

▶ Autoroute des Titans Genève - Lyon

Exemples de chaussées décalées

▶ Autoroute A9 Lavaux



Déclivités constantes

- Déclivité longitudinale i
 - >> Exprimée en %

$$i = tg\alpha$$

- ▶ Valeur positive rampe
- ▶ Valeur négative pente

Déclivité minimale

▶ Permettre l'évacuation des eaux superficielles

Déclivité minimale

▶ En rase campagne

$$\rightarrow$$
 i_{min} = 0,5 % souhaitable

$$\rightarrow$$
 $i_{min} = 0.3 \%$ absolue

▶ En localités

$$\rightarrow$$
 $i_{min} = 0.2 \%$ absolue

Déclivité maximale

Véhicules légers

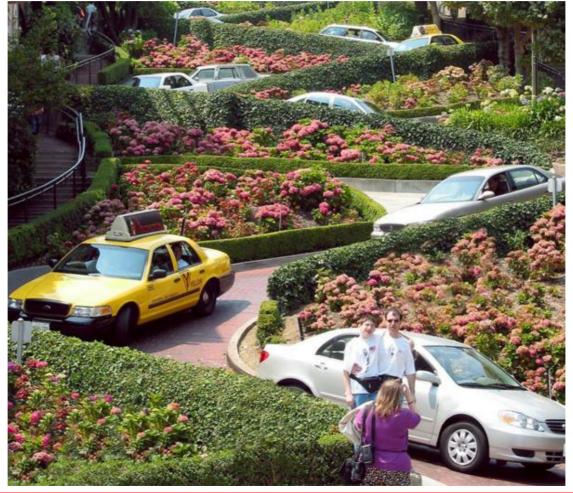
▶ Limite d'adhérence pneu - chaussée
20 à 25 %

➤ En cas de conditions hivernales
5 à 10 %

▶ Poids lourds

- >> Vitesse déclinant rapidement en rampe
- >> Risque d'échauffement des freins en pente

Effets d'une déclivité élevée


- ▶ Consommation d'énergie accrue
- ▶ Vitesse commerciale très réduite
- ▶ Gêne du trafic
 - >> Différence de vitesse entre les divers types de véhicules
 - >> Création de bouchons
 - >> Danger d'accident

Effets d'une déclivité élevée

- ▶ Gêne des riverains
 - >> Nuisances sonores
 - >> Pollution atmosphérique
- **▶** Entretien hivernal important
- ▶ Orniérage accru

Lombard Street (San Francisco – CA)

▶ 27 % réduit à 16 %

Exemples extrêmes ...

► Scanuppio (Italie)

Valeurs préconisées (CH)

- ► SN 640 110
 - >> En fonction de la vitesse de base

Vitesse de base V_A	(km/h)	40	60	80	100	120
Déclivité maximale i_{max}	(%)	12	10	8	6	4

- ▶ Réduction
 - **>> Ponts**
 - >> Ouvrages souterrains

Autres valeurs préconisées

▶ En fonction de l'environnement

Type de terrain	Autoroutes Freeways	Routes hors-localités Rural highways	Routes urbaines <i>Urban highways</i>
Plaine / Level	3 ÷ 4 %	3 ÷ 5 %	5 ÷ 8 %
Valloné / Rolling	4 ÷ 5 %	5 ÷ 6 %	6 ÷ 9 %
Montagneux / Mountainous	5 ÷ 6 %	5 ÷ 8 %	8 ÷ 11 %

Valeurs internationales

Tableau PL-A1 Pentes maximales – Routes en milieu rural									
VITESSE DE CONCEPTION (km/h)									
PAYS	40	50	60	70	80	90	100	110	120
AFRIQUE DU SUD									
plat	-	-	-	5	4	3,5	3	3	3
vallonné	-	7	6	5,5	5	4,5	4	-	-
montagneux	10	9	8	7	6	-	-	-	-
ALLEMAGNE	-	-	8	7	6	5	4,5	-	4
AUSTRALIE									
plat	-	-	6 - 8	-	4 - 6	-	3 - 5	-	3 - 5
vallonné	-	-	7 - 9	-	5 - 7	-	4 - 6	-	4 - 6
montagneux	-	-	9 - 10	-	7 - 9	-	6-8	-	-
CANADA	7	7	6 - 7	6	4 - 6	4 - 5	3 - 5	3	3
routes secondaires	11	11	10 - 11	9	7 - 8	6 - 7	5 - 7	5 - 6	5
ÉTATS-UNIS									
plat	-	-	5	5	4	4	3	3	3
vallonné	-	-	6	6	5	5	4	4	4
montagneux	-	-	8	7	7	6	6	5	5
FRANCE	-	-	7	-	6	-	5	-	-
GRÈCE	-	11	10	9	8	7	5	4,5	4
ITALIE	10	10	7	7	6	5	5	5	5
routes secondaires	12	-	10	-	7	6	6	-	-
JAPON	7	6	5	-	4	-	3	-	2
SUISSE	12	-	10	-	8	-	6	-	4

Source: Lamm et al. dans Highway design and traffic safety engineering handbook. Copyright 1999, McGraw-Hill Compagnies, Inc.

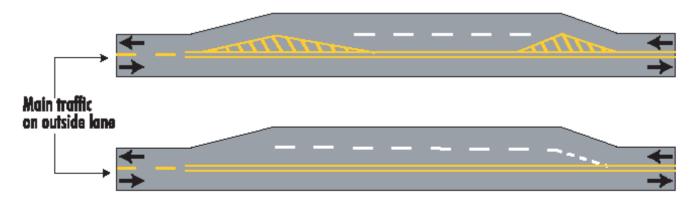
de circulation - Automne 2024

Voies additionnelles en rampe

- ▶ Un fort différentiel de vitesse entre voitures légères et véhicules lents en rampe amène ...
 - >> ... une gêne à la circulation des voitures légères
 - >> ... une diminution de la capacité et de la charge admissible
 - >> ... une diminution de la vitesse commerciale
 - >> ... une insécurité accrue, car les dépassements deviennent dangereux

Voies additionnelles en rampe

Véhicules lents


- Poids lourds PL (par extension)
- **Caravanes**
- >> Véhicules légers à faible performance dynamique

Disposition

▶ Voie lente

▶ Voie de dépassement

Voie lente

▶ Voie lente

→ Autoroute A9 Lausanne → Villette

Voie de dépassement

- ▶ Voie de dépassement
 - **▶ Autoroute A12 Vevey** → Châtel Saint-Denis

Conception d'une voie additionnelle

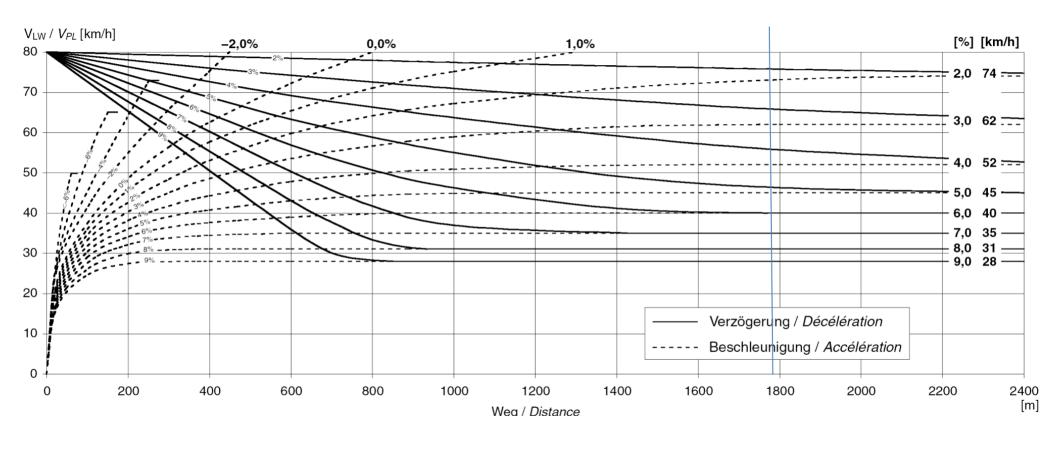
- ▶ Établissement du diagramme de vitesse
 - >> Vitesse de projet des VL et des PL
- ▶ Vérification du critère de dynamique de conduite
 - >> Le différentiel de vitesses est-il suffisamment important?
 - □ En valeur absolue (km/h)
 - □ Dans l'espace (longueur du dépassement)
 - **>>** Emplacement

Conception d'une voie additionnelle

- Vérification du critère de technique de circulation
 - >> Y a-t-il suffisamment de trafic pour justifier une voie additionnelle?
- Autres critères
 - **→** Économie
 - >> Place à disposition
 - **>> Environnement**

Établissement du diagramme de vitesse

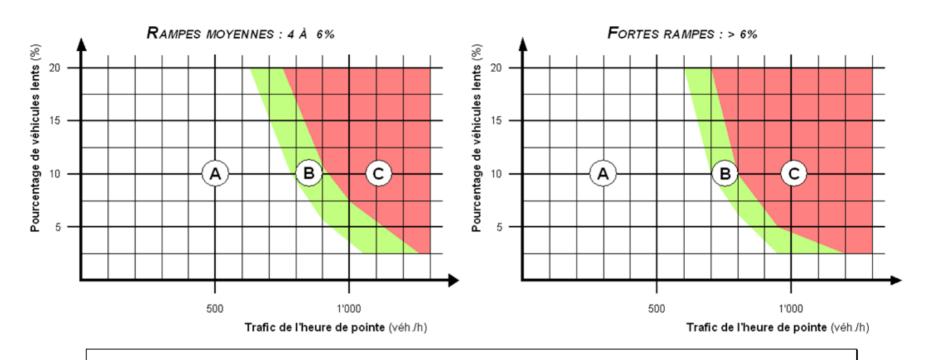
▶ Voitures légères
V_{p(VL)}


Déclivité i	(%)	± 7	± 8	± 9	≥ ± 10
Vitesse de projet V_{VL} des VL	(km/h)	80	75	75	70

▶ Poids lourds

$$V_{p(PL)}$$

▶ Diagramme V_p = fonction longueur / déclivité

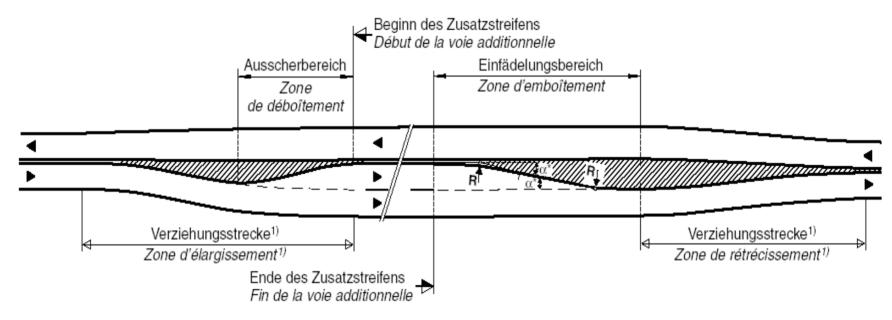

Vitesse des PL en rampe

Critère de dynamique de conduite

- ▶ Voies additionnelles en rampe nécessaires si
 - → V_{PL} < 55 % de V_{VL} sur au moins 500 m pour les RGD munies d'une séparation physique des voies de circulation
 - **▶ V**_{PL} < 65 % de V_{VL} sur au moins 200 m pour les autres routes
 - >> Autres critères possibles
 - ☐ Selon une différence de vitesse absolue
 - □ Distances différentes
 - ☐ Etc.

Critère de technique de circulation

- A : les voies additionnelles ne sont pas nécessaires
- B : les voies additionnelles sont souhaitées quand les distances de visibilité sont limitées
- C: les voies additionnelles sont souhaitées


Autres critères

- **▶** Environnement
 - >> Préférable dans une zone de plaine
 - >> Moins évident en zone de montagne
 - >> Place à disposition
- **▶** Conditions économiques
- **▶** Standards du M.O.

Emplacement de la voie additionnelle

▶ Début et fin en fonction du critère dynamique de conduite

Zones de transition

	RGD pourvue d'une séparation Route sans séparation physique des sens de circulation des sens de circulation		
Longueur de la zone d'emboîtement (m)	125 à 150	80 à 100	
Longueur de la zone de déboîtement (m)	80 à 100	40 à 50	
Angle du biseau α	1:20 à 1:25	1:15 à 1:20	

Longueur minimale

▶ RGD

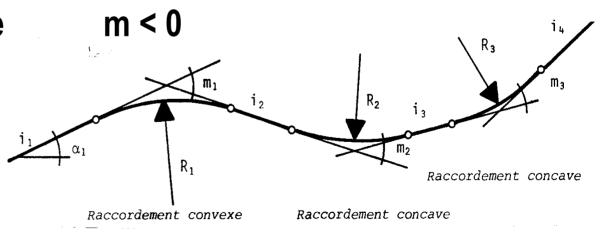
- >> Pourvues de séparation physique des sens de circulation
- → 1'000 m

► RP

Déclivité i	(%)	4	5	6	≥7
Longueur minimale L _{min}	(m)	450	350	250	200

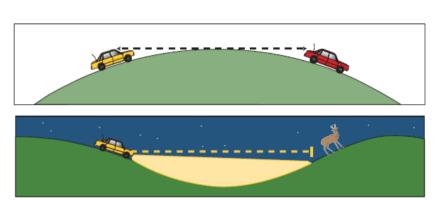
Distance minimale

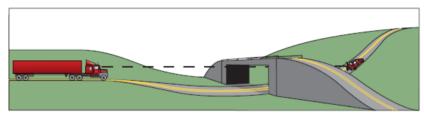
- **▶** Distance entre 2 zones successives
- ▶ 2'000 m sur les RGD pourvues de séparation physique des sens de circulation
- ▶ 600 m pour les RP sans séparation physique des sens de circulation


Raccordements verticaux

▶ Changement de déclivité

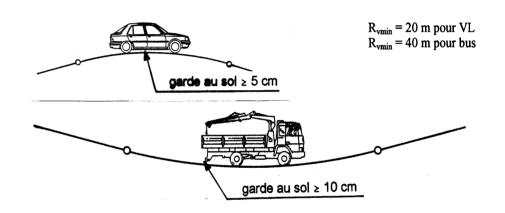
$$m = i_1 - i_2$$


- **▶** Raccordement convexe
- ▶ Raccordement concave


m > 0

Rayons verticaux - Valeurs limites

- Garde au sol
 - >> Faibles vitesses
- **▶** Confort
 - >> Limiter l'accélération verticale
- Visibilité
 - □ Voir un obstacle (convexe)
 - □ Éclairage des phares (concave)
- ▶ Esthétique
 - >> Confort optique (concave)



Garde au sol

▶ Objectif

- >> Pas de choc chaussée véhicule
- » Réserve de 5 cm
- >> Concave: porte-à-faux
- >> Convexe : empattement

▶ Valeurs minimums

>> Convexe

 $R_{v} = 20 \text{ m}$

>> Concave

 $R_{v} = 40 \text{ m}$

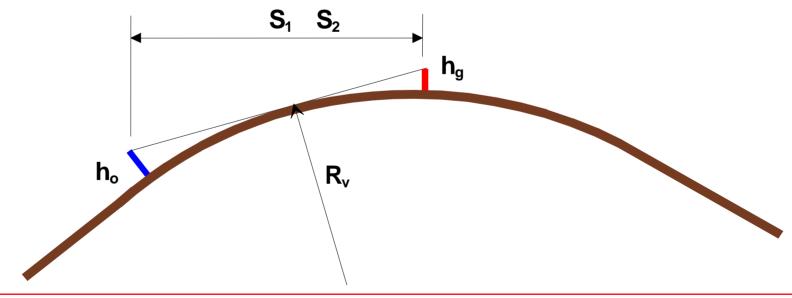
Accès parkings

- **▶** Rayon minimum
- ▶ En cas d'absence de rayons
 - **▶ Différence de déclivité maximale de 6 %**

Confort

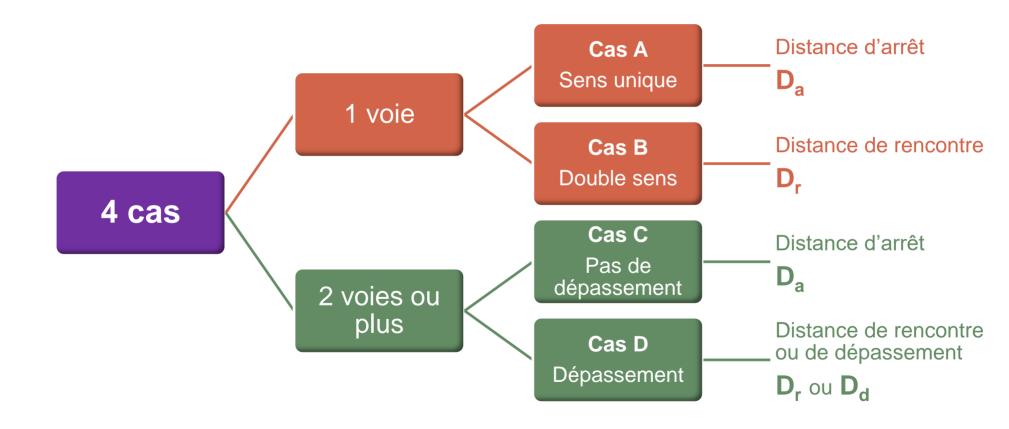
Objectif

- >> accélération verticale faible
- >> confort des usagers
- >> stabilité du chargement
- ▶ Valeurs



$$R_{v,min} = \frac{V_p^2}{a_{v,max}} = \frac{V_p^2}{0.8}$$

Visibilité - Rayon convexe


S₁ D_a Cas A (1 voie - sens unique) Cas C (2 voies - dépassement interdit)

S₂ Cas B (1 voie - double sens)
Cas D (2 voies - dépassement autorisé)

Vérifications (rappel)

▶ Cas possibles

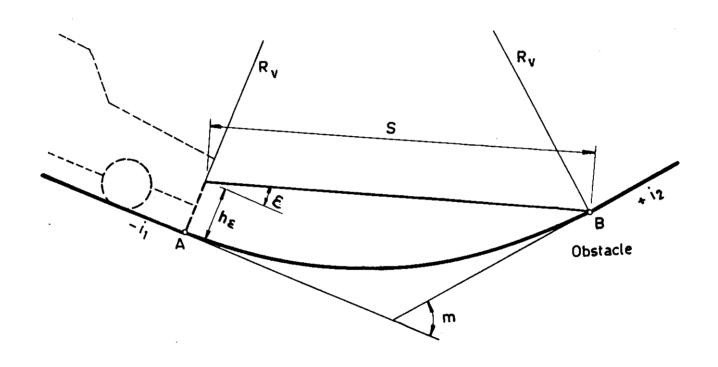
Perte de visibilité en rayon convexe

Distances de visibilité S₁ ou S₂

- ▶ Arrêt d'un usager devant un obstacle
 - \triangleright S₁ ou S₂ < longueur du raccordement

$$\mathbf{S_1}$$
 ou $\mathbf{S_2} = \sqrt{2 \cdot R_v} \cdot \sqrt{h_o + h_g + 2 \cdot \sqrt{h_o \cdot h_g}}$

 $ightharpoonup S_1$ ou S_2 > longueur du raccordement


S₁ ou **S**₂ =
$$100 \cdot \frac{h_o + h_g + 2 \cdot \sqrt{h_o \cdot h_g}}{m} + \frac{R_v \cdot m}{200}$$

h_o hauteur de l'œil 1 m

 h_a hauteur de l'obstacle 15 cm (S_1) ou 1,5 m (S_2)

Visibilité - Rayon concave

▶ Les phares doivent éclairer la route

h_ε hauteur du phare

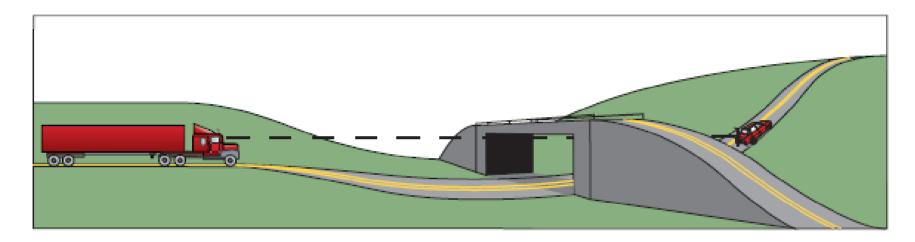
60 cm

e demi-angle du pinceau lumineux

19

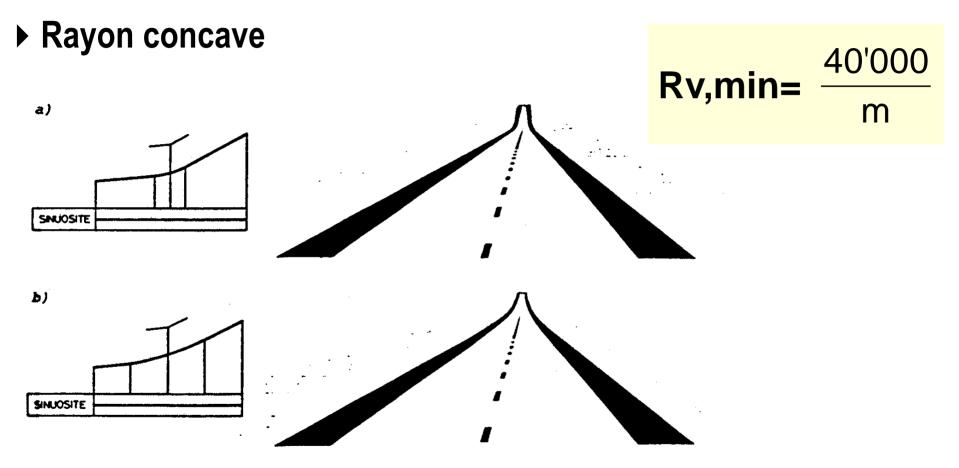
Distance de visibilité S₃

- ▶ Les phares doivent suffisamment éclairer la route
- > S₃ < longueur du raccordement


$$S_3 = 2 \cdot R_V \cdot \left(tg\varepsilon + \frac{h_\varepsilon}{S_D} \right)$$

> S₃ > longueur du raccordement

$$\mathbf{S}_{3} = \frac{\frac{\mathsf{R}_{\mathsf{v}} \cdot m^{2}}{10'000} + 2 \cdot \mathsf{h}_{\varepsilon}}{2 \cdot \left(\frac{m}{100} - tg\varepsilon\right)}$$


Visibilité - Rayon concave

▶ Cas des passages inférieurs P.I.

Vérification du rayon visuel et de la position de la dalle supérieure

Condition esthétique

Pour éviter une impression de cassure (a), le rayon du raccordement concave doit être choisi aussi grand que possible (b).

Valeurs recommandées

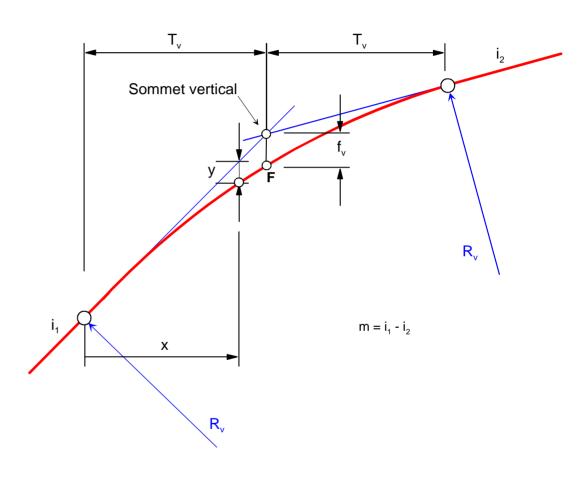
- **▶** Normes suisses
- **▶** Valeurs conservatrices

Vitesse de projet V _p (km/h)	40	50	60	70	80	90	100	≥ 110
Valeurs recommandées (m) pour :								
Raccordement convexe	1'500	2'100	3'000	4'200	6'000	8'500	12'500	20'000
Raccordement concave	800	1'200	1'600	2'500	3'500	4'500	6'000	8'000

- **▶** Sinon
 - >> Distances de visibilité

Éléments géométriques

▶ Tangente verticale


$$\rightarrow$$
 Tv = (Rv · m) /200

▶ Flèche verticale

$$\rightarrow$$
 fv = (Rv · m²) /80'000

▶ Point intermédiaire

$$\rightarrow y = x^2 / (2 \cdot Rv)$$

